
A Hybrid Model for Teaching Recursion

Omar AlZoubi
Computer Science

Carnegie Mellon University in
Qatar

Doha, Qatar
oalzoubi@cmu.edu

Davide Fossati
Computer Science

Carnegie Mellon University in
Qatar

Doha, Qatar
dfossati@cmu.edu

Barbara Di Eugenio
Computer Science

University of Illinois at Chicago
Chicago, USA

bdieugen@uic.edu

Nick Green
Computer Science

University of Illinois at Chicago
Chicago, USA

ngreen21@uic.edu

Mehrdad Alizadeh
Computer Science

University of Illinois at Chicago
Chicago, USA

maliza2@uic.edu

Rachel Harsley
Computer Science

University of Illinois at Chicago
Chicago, USA

rharsl2@uic.edu

ABSTRACT
Novice programmers struggle to understand the concept of
recursion, partly because of unfamiliarity with recursive ac-
tivities, difficulty with visualizing program execution, and
difficulty understanding its back flow of control. In this
paper we discuss the conceptual and program visualization
approaches to teaching recursion. We also introduce our
approach to teaching recursion in the ChiQat-Tutor system
that relies on ideas from both approaches. ChiQat-Tutor
will help Computer Science students learn recursion, develop
accurate mental models of recursion, and serve as an effec-
tive visualization tool with which hidden contexts of recur-
sion can become evident.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education —Computer science education

General Terms
Design, Experimentation

Keywords
Recursion; Intelligent Tutoring Systems; Mental Models

1. INTRODUCTION
Recursion is a fundamental concept in computer science:

it is a mathematical concept, a programming technique, a
way of expressing an algorithm, and a problem-solving ap-
proach [16]. It is an essential and powerful computational
problem solving technique that involves breaking down of a
problem into smaller sub-problems of the same kind. Thus

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGITE’15, September 30–October 3, 2015, Chicago, IL, USA.
c© 2015 ACM. ISBN 978-1-4503-3835-6/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2808006.2808030 .

said, such decomposition is not easily understood by novice
students learning recursion. Many students and novice pro-
grammers seem to struggle to learn it [3]. Some computer
science educators argue that recursion is an inherently diffi-
cult concept to master [17], and it is one of the universally
most difficult concepts to teach [6].

Turbak et al. [22] stated that a key reason why recur-
sion is viewed as a difficult concept is because it is tradi-
tionally taught after students built up preconceptions about
self-referential process based on their experience with loop-
ing. Additionally, Tessler et al. [21] indicated that students
sometimes have difficulty recognizing different invocations of
the same function, and they get confused by the bookkeeping
required for each recursive call. In particular, they struggle
with unfamiliarity with recursive activities, the visualiza-
tion of the program execution, the back-flow of control after
reaching the base case, comparison to loop structures, and
the lack of everyday analogies for recursion.

It is believed that in order to understand the process of
recursion and to be able to write recursive code one must be
able to visualize the nature of a problem and how solutions
to smaller similar problems are combined to solve the orig-
inal problem [2]. In the next section we review some of the
approaches to teaching recursion, discussing the advantages
and limitations of each approach. We also introduce our ap-
proach to teaching recursion in ChiQat-Tutor, a system that
helps students learn basic data structures and algorithms
[10, 1].

2. MODELS FOR TEACHING RECURSION
Tessler et al. [21] cited a number of approaches to teaching

recursion. These include conceptual models of recursion and
control flow, and the use of visual aids. Conceptual mod-
els are defined by teachers and are used as tools for under-
standing or teaching of a system. Conceptual models used
for teaching recursion include mathematical induction, ab-
stract and conceptual discussions of recursion, process trac-
ing, and structure templates of recursive code [24]. On the
other hand, the visual aids approach relies on the use of algo-
rithm animation, program visualizations using video games
of animated characters and robots.

2.1 Conceptual Models
Conceptual models for teaching recursion are tools that

aim at helping students formulate accurate mental models of
the concept of recursion [9, 24]. Conceptual models include
mathematical induction, process tracing, stack simulation,
and structure templates of recursive code [24]. It is believed
that if a person has a mental model of a process, s/he will be
able to make predictions about the behavior of that process,
although sometimes inaccurately [13]. Moreover, possession
of a model will allow a person to debug the model when s/he
is faced with counterexamples.

Early research on teaching recursion embraced the use of
the mathematical induction model [5]. In this model stu-
dents are taught recursion through the theory of recurrence
relations [23]. Similarly, Lewis [15] examined the role of
four modes of algebraic substitution techniques on students
learning to trace linear recursion. The author hypothesize
that differences between these techniques may help students
understand the recursion process as it executed in comput-
ers. However, a possible limitation with this approach is
that beginning computer science students might not possess
the necessary level of mathematical skills required to develop
a clear understanding of recursion [5, 23].

Some researchers believe that more emphasis should be
put on the declarative, abstract level of problem decomposi-
tion rather than the computational model and program exe-
cution visualization [5, 8]. A divide-and-conquer strategy is
applied at the problem level, regardless of the machine im-
plementation. Ginat and Shifroni [8] found that the use of
such model significantly enhanced recursive programs for-
mulation ability of students in comparison to establishing
comprehension via understanding of the process of recur-
sion execution. On the other hand, Wu et al. [24] found
that concrete conceptual model, which provide an appropri-
ate level of details of the process of recursion, is better than
abstract conceptual models for teaching recursion.

Kahney [13] identified a number of mental models of re-
cursion possessed by both novices and expert programmers
in the context of SOLO programming. These include; 1) The
Loop model: novices are hypothesized to possess this model.
They view recursive procedures as a single object instead of
a series of new instantiations. 2) The Odd model: students
acquired the notion that the flow of control statement, rather
than the results of pattern matching, acts as the stopping
condition for recursion. 3) The Syntactic ”Magic” model: a
student is able to match on syntactic elements and their posi-
tions, and make predictions about the behavior of the recur-
sive programs on this basis, but has no clear understanding
of how recursion works. 4) The Copies model: students view
recursive instantiations of a recursive procedure as copies, as
opposed to a single object, as in the Loop model. It is in-
teresting point that novices have the Loop mental model of
recursion. Some research suggested that it is important to
teach recursion before loops and not vice-versa [22].

Wilcocks and Sanders [23] extended the work of Kahney
[13] and evaluated a number of conceptual models to teach-
ing recursion. These include the mathematical, tree, copies,
analogies, and graphical recursive structure models. They
found that the Copies Model is more viable than the other
models. It is believed that this Copies Model is what expert
programmers have of recursion [13]. However, Kahney [13]
cautioned that having acquired the Copies mental model is
not sufficient to determine what students really know about

recursion, since students can make predictions about recur-
sive procedures behavior without fully understanding recur-
sion.

There has been some previous research on using structure
templates and worked-out examples for teaching recursion
in the context of LISP programming [17]. It was found that
learning is facilitated by using abstract representations of
the structure of recursion examples to guide initial coding
attempts of students. The type of information exploited by
this mechanism is an example or demonstration supplied by
some source. However, Rinderknecht [18] mentioned that al-
though examples can be used to develop analogical problem
solving skills, care should be taken not to rely on them too
early. This is in order to prevent students from developing
the magic or syntactic model, identified by Kahney [13].

2.2 Program Visualization
Some researchers advocated program visualizations to in-

troduce recursion. For example, Dann et al. [3] used pro-
gram visualization technique to introduce recursion for stu-
dents. They utilized a software system named Alice which
is a 3-D interactive graphics programming environment. It
has an object oriented flavor and it offers full scripting envi-
ronment for 3-D object behavior (e.g., animals and vehicles)
in a virtual world. Students can control object appearance
and behavior by writing simple scripts. This allows students
to gain intuitive sense and mathematical insight into the re-
cursive process. However, Edgington [4] cites a number of
limitations with the Alice system which included; a) Alice
does not allow to create new objects programmatically; and
b) Alice does not allow the inspection and modification of
functions from within an executing program.

Similarly, Tessler et al. [21] used the Cargo-Bot video
game for introducing recursion to novice programmers. In
this game players control virtual robots by creating pro-
grams using a simple visual language. The goal is to control
a robotic arm so that it moves a set of crates to a spec-
ified goal configuration. One of the interesting features of
Cargo-Bot is that it supports recursion but not looping. The
authors aimed to measure if students who played Cargo-Bot
were able to transfer their experiences in playing Cargo-Bot
to solve recursive problems in Java. Results from a con-
trolled experiment showed significant improvements in stu-
dents understanding of recursion using this technique.

Algorithm animation tools are commonly used as an aid to
teaching recursion. The instructor programs an animation
for commonly used algorithms (e.g. factorial, quick sort).
The student runs the prepared animation observing the be-
havior using different inputs. Bower [2] argues that students
should be able to manipulate the animations, not just watch
them, in order to learn. It appears that there is no consen-
sus on the benefits of algorithm animation as a learning aid.
Stasko et al. [20] found no significant result suggesting that
algorithm animators assist learning. They suggested that fu-
ture research should focus on allowing students to construct
their own animations. On the other hand, a meta-analysis
of 24 experimental studies on the use of algorithm visualiza-
tion (AV) as an aid for learning algorithms was conducted
by Hundhausen et al. [12]. Their results showed that the
effectiveness of AV is determined by how students use the
AV technology rather than what the AV technology shows
them. Other research showed that animation seems to make

Figure 1: Interface of ChiQat-Tutor. Left: a problem, its explanation, and questions. Center: task list and
recursion graph. Right: help button and recursive code. Bottom: system’s feedback.

a challenging algorithm more accessible, thus leading to en-
hanced learning [14].

Recursion Graphs (RGraphs) are visual aids used to in-
troduce recursion to students [19]. RGraphs are similar to
recursion trees as they show the invocation sequence of re-
cursive functions. However they add the detailed calling
sequences including intermediate results for each recursive
call. An RGraph is a directed graph with two sets of ver-
tices (oval for a recursive call, and square for pre/post pro-
cessing statements of recursive calls). The RGraph is built
layer by layer from top to bottom (i.e. breadth-first) with
directed edges indicating the processing sequence. One par-
ticular feature of an RGraph is that it is traceable as it
shows the detailed invocation sequence from one layer to
another. Results showed that the use of RGraphs helped im-
prove students’ learning of recursion by providing flexibility
in demonstration and more focused pedagogical interactions
from students [19].

3. A HYBRID MODEL FOR TEACHING RE-
CURSION IN CHIQAT-TUTOR

We believe that a hybrid approach, combining ideas from
conceptual models and visual aids should be followed for
teaching recursion, in order to capitalize on the advantages
of both approaches, and avoiding misconceptions induced by
either of them. In ChiQat-Tutor we developed an approach
to teaching recursion that is based on the visual model of
RGraphs, which is a clever visual representation of recursive

execution. It also uses ideas from the conceptual model of
teaching recursion in the form of code structure templates.

ChiQat-Tutor is a modular tutoring system whose goal
is to facilitate learning of core CS data structures (e.g.,
linked lists, trees, stacks) and algorithmic strategies (e.g.,
recursion). The interface of ChiQat-Tutor is shown in Fig-
ure 1. We extended the use of RGraph in our system by
implementing several interactive tasks described in Table 1.
Students can interact with RGraph representations of dif-
ferent recursive problems (e.g., factorial, palindrome). The
RGraph-based interactive tasks can help students identify
the recursive structure of problems, understand recursive
processes, and identify the critical features of recursive so-
lutions to these problems. These tasks were designed with
different levels of difficulty, which will allow users to progress
smoothly from one task to another.

Previous research showed the importance of using graph-
ical representations in the form of diagrammatic traces and
animations of recursive problems, which allowed novices de-
velop correct mental models of recursion [7, 23]. The tasks
that can be carried on in ChiQat-Tutor combine characteris-
tics from different conceptual models to teaching recursion.
These include Stack Simulation, the Copies Model, and Tree
Model [24, 25]. For example, the animation task represents
a stack simulation approach to teaching recursion. Tracing,
validating, and constructing RGrahps can enforce the Copies
and Tree mental models of recursion. This allows students to
look at recursive solutions from different angles. We believe
that the use of RGraphs coupled with the different tasks that
students can perform on them can help students develop the

Table 1: Task Description

Task Name Description

Tracing Users click on the nodes of the RGraph and follow the right order of execution. The nodes’ color
will change as users make progress.

Validating Students work on two types of RGraph: an incomplete RGraph, and an RGraph that contains
errors. Given a sample code, students are required to fill the partial RGraph, and then validate
their solution. Similarly, they are required to correct the errors in the flawed RGraph, and then
validate their solution.

Constructing Learners build an RGraph for a given recursive code. The first few nodes of the RGraph are provided
to them. Students need to validate their solution after finishing constructing the RGraph.

Animating Learners play a prepared animation and observe the execution order of the recursive code. The
node’s color changes as the animation progresses; green indicates an active function call; gray
indicates a terminated call or an intermediate result, which is explained in a legend next to the
RGraph.

Answering Questions Students answer multiple choice questions related to the current recursive problem. This task is
designed to test learners’ under- standing of the recursive problem and recursion in general.

Code Templates Students are required to construct a recursive solution for a given problem. They are given a code
template, and they can choose from a set of predefined code statements to construct their solution.
Feedback can be given during the process.

Object Manipulation Students can work on Linked Lists objects and Binary Search Trees. They can perform tasks such as
traversing, sorting, addition and deletion of nodes. These tasks can be undertaken by constructing
solutions based on a code template. The effect of their solution can then be seen on the object they
working on, either a linked list, or a binary search tree.

Copies Model that expert programmers are hypothesized to
possess.

Our approach for teaching recursion also embodies a much
widely used strategy of using structure templates of recur-
sive code and worked-out examples as an instructional mate-
rial [25, 17]. The cognitive processes required to learn from
a solved example are well understood. The learner must:
(a) store in procedural memory the steps in the example;
(b) interpolate the missing steps, since solved examples are
necessarily incomplete to some extent; (c) infer the purpose
of at least the main steps in the example; and (d) generalize
over the specifics of the example. Working through exam-
ples (with the implicit or explicit expectation the learner will
generalize from these examples) is pervasive in instructional
situations, and much appreciated by students.

It is also important to mention that many operations on
Linked Lists and Binary Search Trees (BST) are naturally
performed with recursive solutions. Thus, improving stu-
dents understanding of recursion will allow them to apply
recursive solutions to these types of data structures. We
plan to add tasks that allow students to manipulate Linked
Lists and BSTs using recursion. These tasks include travers-
ing, addition and deletion of nodes. ChiQat-Tutor will serve
as an effective visualization tool with which hidden effects
of nested function calls would become evident when applied
to a whole range of problems that can be solved recursively.

4. EVALUATION
We have conducted a pilot study to evaluate the effec-

tiveness of our system on learning recursion. The study
looked for positive learning gains from pre-test to post-test
after working with ChiQat-Tutor. Participants were 16 un-
dergraduate students from Carnegie Mellon University in
Qatar. The students were enrolled in “15-110: Principles
of Computing”, a course that teaches fundamentals of pro-

Table 2: Pre/post tests and learning gain results
Pre-test Post-test Learning gain

Mean .54 .60 .09
Standard deviation .17 .13 .29
Range .30 – .85 .45 – .85 - .50 – .50

gramming in Python. Students participated in the study
after receiving an hour long lecture about recursion in class.

4.1 Experimental protocol
First, students were asked to complete a consent form.

Then they were asked to complete a pre-test which included
problems that involved recursive decomposition using RGraphs.
Then they were asked to work with ChiQat-Tutor for 30 min-
utes. There were 3 recursion problems to work with, each
with 5 tasks, as described in Table 1. Students were then
asked to complete the 3 recursion problems. Students were
then asked to complete a post-test (identical to the pre-test)
after finishing working on the problems.

4.2 Learning outcomes
Each question of the pre and post tests was graded by two

graders on a scale from 0 to 5 following written guidelines.
There were two questions per test, which brings the total
for each test to 10. Scores were then scaled between 0 and
1. Hake’s normalized learning gain (g) was then computed
according to the formula in equation 1. Normalized gain is
defined as the ratio of the difference in total score to the
maximum possible increase in score [11].

g =
post− pre

1 − pre
(1)

Table 3: Frequency of tasks attempted per student
and the associated learning gain

ID Animation Questions Tracing Validating Constructing Learning gain
1 0 9 1 5 2 0
2 1 9 0 2 2 .50
3 0 9 0 1 1 .14
4 0 9 4 2 3 .29
5 0 5 1 0 1 -.13
6 2 10 0 2 1 .17
7 2 9 0 1 1 -.10
8 1 12 0 2 1 -.50
9 2 12 1 2 2 .50
10 0 21 2 2 2 .50
11 0 21 1 1 1 0
12 0 15 0 5 1 0
13 3 9 0 4 3 -.11
14 1 14 0 4 1 -.38
15 1 10 0 1 2 .20
16 2 12 1 7 3 .29

Table 4: Pearson correlation coefficient per task
with learning gain

Animation Questions Tracing Validating Constructing
-.02 .12 .39 -.03 .48*

*. Correlation is significant at the .05 level (one-tailed)

Table 2 shows the mean and standard deviation for pre/post
tests and learning gain. A paired t-test was conducted on
pre/post tests scores to measure for any significant differ-
ences between the the tests scores. There was significant
difference between the scores of pretest (M = .54, SD = .17)
and posttest (M = .6, SD = .13); t(15) = 2.13, p < .05.

We were interested in how individual tasks described in 3
influenced learning gains. This may influence future design
decisions for the system. In order to do that, we counted
the frequency of attempts for each individual task per stu-
dent, throughout their interaction with the system. First,
we computed the correlation between individual tasks and
learning gain. Pearson correlation is shown in Table 4. It
can be seen that the constructing task was significantly cor-
related with learning gain: r(14) = .48, p < .05. The tracing
task was only marginally insignificant: r(14) = .39, p = .067.
The other tasks did not show any significant correlations.

The constructing task is considered by far the most diffi-
cult task. We designed the tasks in such a way so students
can work on simple tasks first and then progress to the most
difficult. We assume that the animation, tracing, and val-
idating tasks alone do not help students learn the copies
model we wanted them to learn. In fact some of these tasks
such as validating may encourage some students to learn the
syntactic model of learning recursion. Furthermore, algo-
rithmic animation in this experiment alone did not show to
be helping students learning recursion. However we believe
that it might help make an algorithmic concept more acces-
sible. Answering questions showed little impact in helping
students learn. However, we believe that the content and
way of presenting these questions may have affected their
contribution to learning gain.

5. CONCLUSIONS
We discussed the importance and difficulty of teaching

recursion to novice Computer Science students. We also
discussed different approaches to teaching recursion, with a
focus on conceptual and visual tools. We then introduced
our approach to teaching recursion in ChiQat-Tutor. We are
currently using the first version of the recursion module in an

introductory programming course at Carnegie Mellon Uni-
versity in Qatar enrolling approximately 60 students. Future
work will be driven by the results of this first trial. We antic-
ipate adding structured templates for writing code, scripting
capabilities, intelligent feedback, and student modeling. We
also plan to conduct larger studies to allow comparison be-
tween different conditions that include; the visualization ap-
proach, the conceptual approach, and the hybrid approach.

6. ACKNOWLEDGMENTS
This publication was made possible by NPRP grant 5–

939–1–155 from the Qatar National Research Fund (a mem-
ber of Qatar Foundation). The statements made herein are
solely the responsibility of the authors.

References
[1] O. AlZoubi, D. Fossati, B. D. Eugenio, and N. Green.

ChiQat-Tutor: An integrated environment for learning
recursion. In ITS-AIEDCS 2014, 12th International
Conference on Intelligent Tutoring Systems (ITS),
2nd Workshop on AI-supported Education for
Computer Science (AIEDCS), Honolulu, HI, June
2014. Short paper.

[2] R. W. Bower. An investigation of a manipulative
simulation in the learning of recursive programming,
1998.

[3] W. Dann, S. Cooper, and R. Pausch. Using
visualization to teach novices recursion. In 6th
Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’01, pages
109–112, New York, NY, USA, 2001. ACM.

[4] J. Edgington. Teaching and viewing recursion as
delegation. J. Comput. Sci. Coll., 23(1):241–246, 2007.

[5] G. Ford. An implementation-independent approach to
teaching recursion. ACM SIGCSE Bulletin, 16(1):
213–216, 1984.

[6] J. Gal-Ezer and D. Harel. What (else) should cs
educators know? Communications of the ACM, 41(9):
77–84, 1998.

[7] C. E. George. Experiences with novices: The
importance of graphical representations in supporting
mental models. In 12 th Annual Workshop of the
Psychology of Programming Interest Group, pages
33–44, 2000.

[8] D. Ginat and E. Shifroni. Teaching recursion in a
procedural environment—how much should we
emphasize the computing model? SIGCSE Bull., 31
(1):127–131, Mar. 1999.

[9] T. Götschi, I. Sanders, and V. Galpin. Mental models
of recursion. SIGCSE Bull., 35(1):346–350, Jan. 2003.

[10] N. Green, O. AlZoubi, M. Alizadeh, B. D. Eugenio,
D. Fossati, and R. Harsley. A scalable intelligent
tutoring system framework for computer science
education. In CSEDU 2015, 7th International
Conference on Computer Supported Education,
Lisbon, Portugal, May 2015.

[11] R. R. Hake. Interactive-engagement versus traditional
methods: A six-thousand-student survey of mechanics
test data for introductory physics courses. American
journal of Physics, 66(1):64–74, 1998.

[12] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages & Computing, 13(3):
259–290, 2002.

[13] H. Kahney. What do novice programmers know about
recursion. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’83,
pages 235–239, New York, NY, USA, 1983. ACM.

[14] C. Kehoe, J. Stasko, and A. Taylor. Rethinking the
evaluation of algorithm animations as learning aids:
an observational study. International Journal of
Human-Computer Studies, 54(2):265–284, 2001.

[15] C. M. Lewis. Exploring variation in students’ correct
traces of linear recursion. In Proceedings of the Tenth
Annual Conference on International Computing
Education Research, ICER ’14, pages 67–74, New
York, NY, USA, 2014. ACM.

[16] D. D. McCracken. Ruminations on computer science
curricula. Communications of the ACM, 30(1):3–5,
1987.

[17] P. L. Pirolli and J. R. Anderson. The role of learning
from examples in the acquisition of recursive
programming skills. Canadian Journal of
Psychology/Revue canadienne de psychologie, 39(2):
240, 1985.

[18] C. Rinderknecht. A survey on teaching and learning
recursive programming. Informatics in Education, 13
(1):87–119, 2014.

[19] L. Sa and W.-J. Hsin. Traceable recursion with
graphical illustration for novice programmers. InSight:
A Journal of Scholarly Teaching, 5:54–62, 2010.

[20] J. Stasko, A. Badre, and C. Lewis. Do algorithm
animations assist learning?: An empirical study and
analysis. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing
Systems, CHI ’93, pages 61–66, New York, NY, USA,
1993. ACM.

[21] J. Tessler, B. Beth, and C. Lin. Using cargo-bot to
provide contextualized learning of recursion. In
Proceedings of the Ninth Annual International ACM
Conference on International Computing Education
Research, ICER ’13, pages 161–168, New York, NY,
USA, 2013. ACM.

[22] F. Turbak, C. Royden, J. Stephan, and J. Herbst.
Teaching recursion before loops in cs1. Journal of
Computing in Small Colleges, 14(4):86–101, 1999.

[23] D. Wilcocks and I. Sanders. Animating recursion as
an aid to instruction. Computers & Education, 23(3):
221 – 226, 1994.

[24] C.-C. Wu, N. B. Dale, and L. J. Bethel. Conceptual
models and cognitive learning styles in teaching
recursion. SIGCSE Bull., 30(1):292–296, Mar. 1998.

[25] C.-C. Wu, G. C. Lee, and J. M.-C. Lin. Visualizing
programming in recursion and linked lists. In
Proceedings of the 3rd Australasian Conference on
Computer Science Education, ACSE ’98, pages
180–186, New York, NY, USA, 1998. ACM.

